
Phase-space distributions and spectral properties for non-hydrogenic atoms in magnetic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3187

(http://iopscience.iop.org/0305-4470/26/13/022)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 26 (1993) 3187-3200. Printed in the UK 

Phase-space distributions and spectral properties for 
non-hydrogenic atoms in magnetic fields 

W Janst, T S Monteirot, W Schweized and P A Dandot 
I Lehrstuhl fur Thwretische Amphysik, Universitat Tubingen, D-7400 TUbingen, Federal 
Republic of Gemany 
t Department of Mathematics Royal HoUoway and Bedford New College, University of 
London. Egham, Surrey, TW20 OEX, UK 

Received 9 November 1992, in final form 3 March 1993 

Abstract. We present here the first study of Ihe quantum phasedpace behaviour (wlgner 
functions) for non-hydrogenic atoms in magnetic fields as well a5 a comprehensive study 
of spectxd properties. We consider primarily an energy regime (scaled energy -0.5) where 
hydrogen is near-integrable and hydrogenic wavefunctions would be localired on ton. We find 
that the quantum energy level statistics for non-hydrogenic atoms are at Ihe ‘chaotic’ (w~per)  
limit, However, the quantum phase space distributions, contrary to what one would expect if 
the underlying classical motion were chaotic, remain dominated by to~~-fik structures. Butthe 
wavefunctions do explore a larger fraction of phare-space than in the hydrogenic case where, in 
the integrable regime, W i p  wavefundons are generally localized on a single tom. Due to 
the mn-semiclassid name of the mre they are localized on more than one tom; additional 
structures other ulan lhe tori are also present Possible interpretations of the results in terms of 
models of the underlying classical dynamics are discussed. 

~~ 

1. Introduction 

The problem of the hydrogen atom in a magnetic field remains one of the most rewarding 
case studies in the field of quantum chaology, i.e. the study of the behaviour of quantum 
systems whose classical counterparts are chaotic. The diamagnetic hydrogen atom is one 
of the simplest lowdimensional systems accessible to both experimental and themtical 
study. More importantly though, it has a scaling property of energy which has permitted 
detailed comparisons between the classical and quantal dynamics. So it has been possible 
to carry out detailed quantitative tests of predictions from theories such as periodic orbit 
theory (Gutzwiller 1971, 1990, Bdian and Bloch 1972) and random mahix theories using 
such calculations at fixed scaled energies. Over the last few years this system has been 
intensively studied both by means of experiment (Holle et d 2988) as well as classical and 
quantal calculations (for reviews see Hascgawa et ~l .1989). 

There. is now also a considerable bcdy of experimental work available on non-hydrogenic 
Rydberg atoms in fixed magnetic fields (Gay et ai 1980, Castro et 1980). In 1990 
Monteiro and Wunner presented a theoretid method for the calculation of quantum spectra 
at fixed scaled energies. More recently experimental work has been carried out on non- 
hydrogenic atoms at fixed scaled energies [Hogemorst 1992). But to date. little work has been 
camed out on the influence of the nonlhydrogenic core on the dynamics of the diamagnetic 
Rydberg atom. There have been no previous studies of the quantum ~~ behaviour in phase- 
space. 
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Unfortunately, for non-hydrogenic atoms, even at fixed scaled energy, comparisons 
with the underlying classical behaviour are not straightforward, since the multi-electron 
core. does not lend itself to a semiclassical description in any energy regime. In the 
hydrogen atom case, quantum phenomena such as the behaviour of the energy level statistics, 
Wigner functions or Fourier transforms of spectra are well correlated with the classical 
dynamics. We consider here the value of these quantum properties as indicators of classical 
regularity/chaos in the presence of a non-hydrogenic core and discuss possible approaches 
to the classical limit. 

2. Theory 

The classical Hamiltonian in atomic units, H’, for the hydrogen atom in a magnetic field 
aligned along the z axis takes the form 

H’ = E = (P0/2) - ( l j r ’ )  + $y2p“ + iy Li, (1) 

where r‘ represents the distance between the nucleus and electron, p‘ = (r‘ - z“)”’ 
and y represents the magnetic field strength in atomic ?its ( y  = 812.35 x I@ T). 
The dynamical range of most interest corresponds to coulomb and diamagnetic terms of 
comparable magnitude and is a function of both magnetic field strength as well as the 
energy E. But by means of a coordinate transformation r -+ r’y2/3, p -+ p’y-‘I3 the 
Hamiltonian may be brought to the form (here we consider only the case L, = 0) 

H = H’y-’P = (P2/2) - ( l l r )  + kp2 = E .  (2) 

Hence now the classical dynamics is dependent only on a single parameter, the scaled energy 
E = For E less than about -1, the motion is completely regular. As E is increased 
though, phase space progressively fills up with chaotic orbits and above about E = -0.1 is 
almost completely ergodic. 

It is also possible to compute quantum spectra for the hydrogen atom in a magnetic 
field at fixed scale energy (Friedrich and Wintgen 1989). Scaling coordinates as above and 
rearranging the Schrodinger equation from its usual form gives 

( - l / r  + f p 2  - G)Y = y ; ’ 3 $ ~ ’ ~ .  (3) 

It is then possible to obtain a set of eigenvalues (yf”) for fixed E corresponding to a set of 
energies Ei = E # ~ .  The field strength has not been entirely eliminated though. Effectively 
each E corresponds to a different value of~Planck‘s constant, i.e. f i  + fiy1l3 since the 
commutation relation between momentum and position coordinates, in scaled coordinates 
becomes [r, p ]  = ifiy113. However, all the eigenvalues now correspond to a single classical 
regime. Phenomena such as spectral densities and quantum scars are now subject to constant, 
sinusoidal fluctuations which are easily identified by means of  Fourier transforms. Hence 
connections between classical and quantum physics are considerably clarified. Problems 
encountered with analyses of unscaled spectra-such as sensitive dependence of Fourier 
transforms on spectral range-are eliminated. 

In a previous work (Monteiro and Wunner 1990) (referred to as MW below) a theoretical 
method for calculating the spectra of highly excited (‘Rydberg’) non-hydrogenic atoms at 
fued scaled energy was presented. For such atoms, the presence of the electronic core means 
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that the classical Hamiltonian no longer scales. However, the non-coulombic interactions 
are. relatively short-ranged and the non-scaling part is only a few atomic units in extent 
while corresponding wavefunctions or classical orbits are thousands of atomic units across. 

Each non-hydrogenic atom may be characterized by a set of quantum defects fi, 
dependent on the orbital angular momentum 1 . ~  In Mw, only model atoms with a single 
quantum defect in the I = 1 channel were considera. The magnetic field does not mix odd 
and even 1, so this is a realistic approximation to the behaviour of many Rydberg atoms 
since p = 0 for 1 2 3. 

Wavefunctions and eigenvalues-were calculated by matching an inner region described 
by quantum defect theory with an outer hydrogenic region by means of an adaptation of R 
matrix theory as described in Monteiro and Wunner (1990). 

Preliminary results presented in that study showed that both spectral moddations as 
well as energy level statistics for non-hydrogenic atoms at a given E were sensitive to the 
value of the quantum defect. with the greatest discrepancy occurring for half integer values 
of p. One possible explanation was to suggest that the differences were due to changes in 
stability of classical orbits. ~ ~ 

In order to investigate these discrepancies we have carried out a study of the quantum 
phase-space properties of non-hydrogenic atoms as well as an extensive study of the s p e . d  
properties. 

A study of a phase-space version of the wavefunction-the Wigner function-for the 
hydrogen atom was carried out by Schweizer et 01 (1992). The Wigner function W(p, q) 
represents the Weyl transform of the wavefunction in configuration space Y(q). For an 
N-dimensional system it is related to it as follows: 

w(p,q) =.1/(2n)~ 'Y*(q+h/2)q(q-  h/2)exp(-iph)&. (4) s 
The Wigner function is only one among several possible phase-space representations of 
the wavefunction (Hillery et a1 1984). n e  Husimi distribution Wiiller 1992) which is 
effectively a Gaussian smoothed version of W(q,  p ) ,  represents &other suitable alternative 
and has also been applied to this problem. 

In the case of the hydrogen atom, for E = -0.5 most wavefunctions are. localized on 
ton associated with two stable periodic orbits: one representing motion perpendicular to 
the magnetic field, the other motion parallel to the magnetic field. Some wavefunctions are 
also localized near a~ fixed point and invariant manifolds associated with an unstable orbit 
which is near circular in shape. Figure 1 represents the corresponding classical Poincare 
surface of section (SOS) for E = -0.5. Semi-parabolic coordinates U ,  U = (i zk z)l/* have 
been used in the classical calculation. The section in phase-space was taken through U = 0, 
so the figure represents the U, P, plane. 

The SOS shows that phase space is dominated by elliptic islands corresponding to the 
perpendicular and parallel stable periodic orbits mentioned above. Between them lies a 
separatrix and hyperbolic fixed points associated with the nearly circular orbit. 

We have calculated Wigner functions at E = -0.5, for a set. of non-hydrogenic atoms 
with quantum:defects 0 c p -= 1 in the S (1 = 0) channel. A set of eigenstates [Yi(~)]'all 
at a given fixed scaled energy, E, and each associated with a different eigenvalue Y;'~, for 
non-hydrogenic atoms were obtained in the form 

i.e. as linear combinations of a set of eigenfunctions [Yk] obtained from diagonalization of 
the diamagnetic hydrogen Hamiltonian over an outer region ranging from an inner boundary 
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Fiere 1. Classical Poincare surf= of seaion for the hydrogen aom in a magnetic field for 
6 = -0.5 in remipanbolic mrdinales U. U = (r i z)'n. The &on io laken lhmugh U = 0 
and repmenu the c.  Pu plane. 

r = a out to r = CO. The expansion coefficients were then obtained by R matrix matching 
of Y to a quantum defect region at r = a. 

The outer region eigenfunctions were calculated in terms of expansions over sturmian 
functions: 

By summing over k one could then obtain the Yi in terms of expansions over sturmians, 
i.e. 

where 

Dil = 
k 

i.e. in similar form to that obtained for the usual solutions of the hydrogen atom by direct 
diagonalization of its Hamiltonian. Of course, strictly, unless p = 0 this expansion is 
only valid outside the non-hydrogenic core. However, the core is relatively small in extent 
compared with the wavefunction so when calculating phase-space distributions, (70) was 
assumed to be valid over the whole range from r = 0 to 00. 

3. Results 

Wigner functions were calculated by converting the wavefunction from spherical polar 
coordinates to semi-parabolic coordinates. Then a large two-dimensional fast Fourier 
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transform was c&ed out as described in Schweizer et a1 (1992). All the phase-space 
sections shown here were t a k q  through U = 0. 

The Wigner distributions cannot be positive everywhere (Hillery er a1 1984). For any 
particular surface of section  there are positive and negative contributions. In fact unlike’ 
Husimi distributions, the Wigners in addition to the major ‘classical’ structures such as tori 
have a background of quantum oscillatory structure both in phase-space as well as when 
one moves off the energy surface. These  fringes have been investigated theoretically by 
Berry (1989). 

The resulting Wigner distributions for a set of quantum levels ranging from the 180th 
level to the 195th level above the ground state for e = -0.5 are shown in figure 2 for /.L = 0 
and in figure 3 for ,U = 0.5. The levels correspond to even parity with magnetic quantum 
number m = 0. The dark regions represent positive values for the Wigner functions, 
the white regions. represent negative values, while the grey background represents zero 
enhancement in the Wigner distribution. The maximal values for the positive contributions 
for our U = 0 phalie-space sections were typically of the same order of magnitude. However, 
for different wavefunctions they are between 1 and 75 times larger than the most negative 
values. The size of f i  in phase space is indicated by the square in the top left hand corner. 

The size of the core region is not indicated in the surfaces of section since it is not a 
parameter of the calcula&on. In principle two diffeknt cores could produce similar quantum 
defects depending on the saength of the non-coulombic interaction. However, the physical 
size of the core region for a typical atom is of the order of a few atomic u+s, while the 
excited electronic state$ considered here-are of the order of a couple of thousand units. 

Figure 2 shows a subset of typical phase-space distributions which appear as a recumng 
pattern in the spectrum of the hydrogen atom. Levels 180,’183, 187-189, 191, 193 show 
examples of ton associated with the stable periodic orbit perpendicular to the field. Level 
185 is localized about the fixed point corresponding to that orbit. Levels 181, 186, 190, 
192 and 194 are localized about the elliptic fixed point and ton associated with the stable 
orbit parallel to the field. 

Levels 182 and 195 on the other hanQ are both localized predominantly near the 
separatrix of the motion; in configuration space the wavefunction would show a quantum 
scar nearly circular in shape corresponding to the unstable circular orbit. Since this orbit is 
unstable (albeit with a small Liapunov exponent) in the Gutzwiller series it provides only 
a sinusoidal modulation, rather than the harmonic oscillator-lie level sets associated with 
stable orbits (Miller 1975). Hence levels scarred by this orbit fall near, though not exactly at 
integer multiples of the scaled action. Therefore, in addition to some weak fringe &ctures, 
it is not unexpected that states which are predominantly localized about the separatrix show 
features associated with the larger ton of the two stable orbits parallel and perpendicular to 
the magnetic field axis. 

Figure 3 represents a set of Wigner functions for the most non-hydrogenic (half-integer 
value of p)  atom possible. It shows a much more complex pattern and illustrates most of 
the phase-space features characteristic of the non-hydrogenic behaviour. 

In phase space one now sees that, unlike the hydrogenic case, the Wigner functions 
are no longer mainly localized about a single tom. Further, although torus-like structures 
akin to those found in the hydrogen atom case may be seen, they appear among other 
structures. Levels 180, 181, 186 and 193 show distributions where ‘tori’ and fixed points 
associated with different classical orbits (of the hydrogen atom) are present. It may be seen 
(by comparing with figure 2) that many of the non-hydrogenic Wigners in figure 3 are, to 
some degree, mixtures of nearby hydrogenic Wigners. 

However, apart from the ton and separatrix of hydrogen, other features are also seen 
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Figure 2. Set of Wigner function plots for quantum levels 180-195 of lhe hydrogen atom in 
a magnetic field for 6 = -0.5. The plots. for comparison with figure 1 are in the U, Po p h e  
through U = 0. 

in figure 3. For example, levels 191 and 193 illustrate another phenomenon: not only are 
several ‘tori’ present, but they are also ‘connected‘ by quantal phase-space stlllctu~es. In 
addition, further structures similar in appearance with those one would find at high s d e d  
energies, i.e. associated with hyperbolic fixed points and invariant manifolds, which were 
not present for hydrogen, are also seen in the non-hydrogenic states. Examples may be seen 
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Figure 3. Set of Wigner function plots for quantum levels ISM95 of a model non-hydmgenic 
atom (Le. !A = 0.5) in a magnetic field for E = -0.5. The plots, for camparison with figure 1 
are in the U, Pu plane through U = 0. 

in levels 184 and 189 among others. A few levels such as 192 or 182 show no obvious 
sign of the original toroidal structure apparent in nearby hydrogenic stab.  

Wigner distributions for other non-zen, quantum defects also display these features; in 
phase-space non-hydmgenic behaviour is clearly seen for p = 0.1, gradually intensifies up 
to LL = 0.5, but then gradually decreases as IC. tends to. 1 because the quantum behaviour is 
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modulo 1 in the quantum defect as the latter represents a phase shift. 
In sum, figure 3 shows that non-hydrogenic wavefunctions explore a considerably 

greater part of phase space than is the case for hydrogen. Phase-space is no longer clearly 
partitioned. If we were to consider lower intensities my employing a logarithmic scale for 
figure 3) we would find an even more complex structure. 

The non-hydrogenic Wigner functions are no longer restricted to tori. However, even 
for p = 0.5 they are qualitatively different from those associated with the truly ‘chaotic’ 
hydrogen atom for E > -0.1. In the latter case, the exponential proliferation of unstable 
periodic orbits gives quantum phasespace distributions a more complex and ‘ergodic’ 
appearance (though less so in the case of quantum states which are strongly scarred by 
predominantly one periodic orbit). Certainly there are no torus-like structures present. 

We also considered here another signature of underlying classical chaos, the energy 
level statistics, In the limit of completely regular motion, or in the limit of completely 
chaotic dynamics, nearest neighbour spacings (NNS) distributions fall into universal classes, 
the former being associated with a Poisson distribution and the latter with what is termed a 
Wigner distribution (unrelated to the Wigner function studied above). Intermediate dynamics 
between regularity and chaos are. not associated with universal distributions but instead have 
NNS distributions which depend on the details of the dynamics of the particular system under 
consideration. 

Brody (1973) showed that the NNS could be fitted analytically by a functional form 
depending on a single parameter, Q, termed the Brody parameter. The Brody fit tends to 
the Poisson limit for Q + 0 and to the Wigner limit for Q -+ 1. The Brody parameter is 
roughly related to the fraction of classical phasespace occupied by chaotic orbits. But in 
the diamagnetic hydrogen case the quantum statistics can exhibit large deviations from this 
rule. 

We have fitted sets of nearest neighbour disibutions for different scaled energies to the 
analytical Brody form, which is shown below: 

P ( S )  =ate  + I)SQ exp(-(aSQ+’)) (8) 

where P ( S )  represents the probability of nearest neighbours lying within an interval S of 
each other and 

a = [rI(Q + 2) / (Q +I)}lQ+L. (9) 

Figure 4 shows a set of plots of the Brody parameter (actually of 1 - Q) against the 
scaled energy E for a set of five dieererit quantum defects. Then a value of 1 on the vertical 
axis corresponds to regular (Poisson) statistics while zero would correspond to ‘chaotic’ 
(Wigner) statistics. An example of a Brody fit to a set of nearest neighbours is also shown. 

In the case of the hydrogen atom, the distribution would only be fully chaotic for 
E > -0.13 and is quite near the regular limit for E = -0.5. A remarkable feature, found by 
Hegerfeldt and Henneberg (1990) is the prominent resonance centred near E = -0.32. It 
occurs at a scaled energy where the important stable orbit perpendicular to the magnetic field 
has a rational winding number. In the semiclassical periodic orbit expansion of Gutzwiller 
this effectively means that the coefficient corresponding to the second traversal of this orbit 
becomes infinite (Honig and Wintgen 1989). The resulting quantum energy level spectrum is 
then strongly modulated by the perpendicular orbit-r rather by sets of harmonic oscillator 
levels. Hence the NNS statistics veer sharply towards the regular limit. 

If we now consider the statistics due to non-hydrogenic atoms, we find that their statistics 
lie nearer the Wigner limit, most so for p = 0.5. In fact, for p = 0.5 the NNS distribution 
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Figure 4. Plots of 1-0 (where Q are Bmdy parameters) against scaled energy for a set of 
WntUm defects. An example of the fit obtained at E = -0.4, yc = 0.3 is also show. 

is already at the Q = I limit for E = -0.5. Other quantum defects have Brody parameters 
intermediate between the values Found for p = 0 and p = 0.5. 

However, the resonance is prominent for all quantum defects, including fi  = 0.5. The 
explanation for the resonance, which relies on the Gutnuiller formula, strictly only applies 
to a stable orbit which is characterized by a rational winding number. Hence we infer from 
the level statistics that the perpendicular orbit is stable for 1.1 = 0.5 and E = -0.32. 

The same We also considered mother statistical indicator, the spectrai rigidity. 
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qualitative behaviour was encountered, with the non-hydrogenic statistics much nearer the 
GOE (Gaussian orthogonal ensemble) limit (Bohigas and Giannoni 1984), particularly for 
p = 0.5, but with the resonance at E = -0.32 clearly seen for all quantum defects. 

In Monteiro and Wunner (1990) we analysed modulations of the photoabsorption 
spectrum and their dependence on the quantum defect. It was found that the height of the 
Fourier transform peaks of the photoabsorption spechum depend strongly on the quantum 
defect. Spectra with p = 0.5 had Fourier transform peaks which were present at the same 
classical scaled action as those for hydrogen, but with lower heights. The one exception 
found in the limited sample considered there was of a cluster of peaks for E = -0.3 which 
were only present for p f 0 and did not appear to correspond to any know hydrogenic 
orbits. 

(a) ~=-0 .316 p=O.O 

0 1 2 3 4 5 5  

'1 (Q) E=-0.500 p=O.O 

0 1 7 - 3 4 5 6  

(b) E=-0.500 p=0.5 

4 "I I 

0 1 2 3 4 5 6  

Figure 5. Fourier transformed energy level specha ai  
E = -0.316 for positive parity, m = 0 for (a) p = 0 
(b) AI = 0.5. 

Figure 6. Fourier transformed energy level specha at 
t = -0.5 for positive parity, m = 0 for (a) p = 0 (b) 
p = 0.5. 

Here we obtained also a set of Fourier transforms of the level densities. It should 
be noted that the eigenvalues we calculated are y2I3. whereas the transformation is with 
respect to y- ' I3 .  According to standard periodic orbit theory the heights of the peaks 
in the transforms are related to the Liapunov exponent of unstable periodic orbits-or, 
in the case of a stable orbit the heights of the peaks (and hence the coefficient of the 
Gutzwiller expansion) are related lo the winding number of the periodic orbit in question. 
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The results are displayed in figures 5-7 for hydrogen and quantum defect 0.5. the horizontal 
axis corresponds to the gamma-scaled action (y'I3 times the action in atomic units). The 
transforms employed quantum levels ranging from effective principal quantum number 18 
through to effective quantum number 45-60 depending on the scaled energy (300-350 levels 
for each uansform). 

0 1 . 2  3 4 5 ,6 

. 

Pigure 7. Fourier transforied en& level specha'at E = 
-0.1 for positive parity. m = I for (0) p = 0 (b) p = 0.5. 

Figure 5(a) and 5(b) show Fourier transforms of energy level specm for p = 0 and 
p = 0.5 near the rmonance energy-here E = -0.316. The transform corresponds to 
positive panty and m = 0. ~ In both spectra, the classical orbits corresponding to each 
individual peak have been identified using the nomenclature of Holle et nl (1988). It may 
be seen &at the hydrogen  atom^ transform (figure 5(a)) is dominated by a set of large 
peaks indicated by R2. R4, R6. These correspond to.an even number of mversals of the 
perpendicular, orbit,: R I .  Fig&5(b) shows that the strong resonance-is attenuated but is 

Figure 6(a) and 6(b) show asimilk set of results (even parity, m = 0) but for E = -0.5. 
This spectrum is dominated by the three periodic.orbits R ,  (perpendicular to the field), 6 
(parallel to the field) and C (circular). There is also a set of prominent peaks corresponding 
to the nth traversals.of these orbits. Figure 6(b) shows that in the p = 0.5 case, the heights 
due to the harmonics of the basic orbits are drastically reduced. Miller (1975) showed that 
stable ,orbits like R I  and  VI^ give rise to sets of harmonic oscillator levels equidistantly 
spaced. This gives the quantum level spectrum (plotted on a y-'I3 scale) a highly ordered 

still present for p = 0.5. , . . .  
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appearance. For p = 0.5 this is no longer the case. These oscillator levels are perturbed and 
are no longer equidistant from each other, hence the Fourier transform of such a spectrum 
will produce weaker peaks. 

Finally, figure 7(a) and 7(b) show some uncharacteristic behaviour found for E = -0.1 
(in this case for odd 1 values, m = 1). At this energy there is a peak which is prominent 
for both p = 0 and I.L = 0.5. However, it is significantly stronger for I.L = 0.5. It is 
labelled XI, since it coincides with an asymmetric ‘exotic’ orbit identified by Holle et a1 
(1988). These exotic orbits appear suddenly at singular points-in fact closer inspection of 
the classical behaviour shows that the peak actually corresponds to a pair of asymmetric 
orbits. There is no clear reason for why this peak should be enhanced for non-hydrogenic 
atoms. Similar behaviour was found for another ‘exotic’ (X3 in Holle et a1 1988). One 
could note that these peaks in the hydrogenic case become more prominent at energies 
above the birfurcation point where they are bom. Hence one plausible explanation might 
be that the non-hydrogenic core has in effect shifted the position of this bifurcation point. 

4. Discussion 

So can one interpret the results, as suggested in Monteiro and Wunner (1990). in terms of a 
destabilization of the periodic orbits? For the diamagnetic non-hydrogenic atom, propagation 
within the core region will not tend to the semiclassical limit even at high energies. So 
there is no straightfonvard classical limit as is available in the hydrogen atom case. 

For the hydrogen atom, much may be inferred about the underlying classical dynamics 
from standard indicators of classical chaos such as the energy level statistics or specwal 
modulations. The statistics are broadly correlated with the fraction of phase-space occupied 
by chaotic orbitethough there are large deviations such as at the resonance. The height of 
the spectral modulations is to a good approximation given by the stability parameters. The 
phase-space dismbutions in the near-integrable regime are localized about a single torus 
with a well defined quantization condition. 

In the non-hydrogenic case, we find that these ‘standard indicators’ are very little use 
as they point in contradictory directions. Even for E = -0.5, the statistics are at the fully 
‘chaotic’ limit. Yet phase space remains dominated by tori (albeit in a complex manner). 
In most cases the amplitude of the Fourier transform peaks in figures 5-7 is significantly 
reduced in the presence of a quantum defect, but it is clear that in the Gutzwiller formula 
they may no longer be approximately fitted by a simple form (sine or sinh) of a small set 
of stability parameters and a more complex form for the prefactor is involved. 

One interpretation of the results is in terms of the scattering model of Du and 
Delos (1988ab) and Gao and Delos (1992): semiclassical waves propagate along the 
classical periodic orbits of the hydrogen atom; on encountering the core they are quantum 
mechanically scattered with phaseshifts given by the quantum defects and amplitude is 
redistributed into the other hydrogenic periodic orbits. In this model the classical dynamics 
remains hydrogenic, but semiclassical waves do not propagate indefinitely along a given 
stable periodic orbit. This model would result in a different form for the prefactor in the 
Gutzwiller formula. It would not, however, account for the additional modulations found 
in Monteiro and Wunner (1990) or for shifts in bifurcation points. The implementation of 
the model by Gao and Delos (1992) on the sodium atom in an electric field produced only 
a small shift in the spectral modulations. Work is in progress to test a similar model for 
diamagnetic non-hydrogenic atoms and to obtain a more appropriate fonn for the amplitude 
in the Gutzwiller formula 
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Another approach to a classical limit of sorts involves replacing the core by a 
one-electron model-potential which reproduces accurately the quantum spectrum. Such 
potentials are readily available for the alkali atoms. We are undertaking calculations on this 
system which will be published in due course. Preliminmy results indicate that a single 

i.e. a single orbit will hop from one torus to another following scattering by the core. In 
between, trajectories are restricted to a given torus. 

Finally one must also consider quantum mechanical dependence on the size of h--as 
suggested in Monteiro and Wunner (1990). The results presented here are qualitatively 
similar at different spectral ranges (corresponding to different effective sizes of h). In 
particular, Wigner functions near levels 300 were also obtained. The amplitudes of Fourier 
transforms are with few exceptions reduced in the presence of a quantum defect, regardless 
of the energy range used for a transform. However, a quantitative test for the specl~al 
modulations will have to await the implementation of a scattering model. 

- orbit will fill the whole of phase space by means of successive collisions with the core; 

5. Conclusion 

In conclusion, although the model non-hydrogenic atom shows some ‘quantum signatures’ of 
underlying unstable classical dynamics, increasingly so as p tends to half-integer numbers, 
the system is far from ergodic. The probable interpretation is that classical orbits will tend 
to follow a torus for a limited period of time, until they are disturbed by a collision with the 
core. This is consistent with preliminary classical calculations using a model potential to 
describe non-hydrogenic atoms as well as the scattering model of Du and Delos (1988% b). 
There it was found that classical orbits, after lingering in the vicinity of a t o m  for a Iiited 
time, are able to ‘jump’ to another, completely different t o m  following scattering by the 
core. Hence although the classical trajectories may in the long term explore most of phase 
space, their progress is quite different from an ergodic trajectory as a given orbit fills phase 
space by exploring different ton in turn and relying on the fact that the tori fill phase space 
densely. Quantum states on the other hand are restricted to the subset of ton which satisfy 
appropriate quantization conditions, given the scaled action corresponding to a particular 
state. Hence the Wigner functions remain dominated by, typically, two or three ton. 
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